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Understanding Policy Gradients

There are three stances one can take when dealing with a mathematical subject.

The �rst one is the engineering/practical/below math stance:

what works, works
mistakes can be avoided by doing empirical tests
math is di�cult and scary

The second one is the symbolic/formal stance:

we can rely on what comes out of equations/proofs
mistakes can be avoided by really careful calculation
math is slow and laborious, but ultimately more powerful than the
engineering stance

The third one is the deep understanding/above math stance:

mathematical symbols are merely a communication crutch, what matters
is to transfer ideas between minds
mistakes can be avoided by really understanding what one is doing, from
�rst principles to the big picture
math is easy and fun, the symbols are needed only afterwards to write
down results for other people

I've been working for some weeks to get a deeper understanding of the current
machine learning methods, in particular reinforcement learning and policy gradients.
Available resources (books, papers) seem to be almost exclusively taking the practical
or symbolic stance, and while this is what one expects to mostly happen (writing well
about mathematical intuitions is hard and not always useful), it is also Good and
Proper to leave hints for the occasional inquirer who wants to transcend the mere
formalisms. The scarcity of such hints (at least those of good quality) surprised me a
little, and in some areas looked more like there actually isn't anyone around who really
understands this shit.

In some cases, I've managed to break through the wall, and although I don't hope to
transfer what I've learned in a blog post, I can at least leave some hints. It will be pretty
random, and I won't be trying particularly hard. Answers without questions, only helpful
to people who have already asked themselves the right questions.

The last section is a list of such hints/quick notes. Skip it if you are not interested in
machine learning (though you really should be interested).

1. MSE loss is obviously fake, in the sense that we write it just to get a gradient
label - prediction. Cross-entropy used after softmax is also obviously fake in the
same way, as long as you look at derivatives of their composition (not
separately).
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2. Speaking of cross-entropy, it is the expected value of bits of surprise if you
observe a random variable, integrated over the real distribution of that variable.
However, the part with the logarithm or "bits of surprise" is just there because we
don't have a sensible word for an integral that does the right thing to
probabilities (i.e. multiplies instead of adding). So the equations for cross-
entropy & co. look more complicated written down than they really are. By the
way, yes, policy gradients really are all about cross-entropy, even though no one
ever told you this.

3. Is it obvious from the de�nition of cross-entropy that it should be minimized
when the two distributions are equal? Well yeah, but this is not a proper proof,
right? Oh yeah, remember the gradient in 1? Now it's both obvious and a proper
proof.

4. I should really be moving on but come on, it's just too funny, look at this quote
from the TensorFlow introductory tutorial. The passage is written in a way that
makes the whole affair seem magical and di�cult, whereas internally the famed
"numerically stable" computation of the gradient is as complicated as labels -
exp(logits - max(logits)) / [sum]...

Note that in the source code, we don't use this formulation, because it is
numerically unstable. Instead, we apply
tf.nn.softmax_cross_entropy_with_logits on the unnormalized logits (e.g.,
we call softmax_cross_entropy_with_logits on tf.matmul(x, W) + b),
because this more numerically stable function internally computes the
softmax activation. In your code, consider using
tf.nn.softmax_cross_entropy_with_logits instead.

5. One of the most crucial parts to understand in all this is the REINFORCE
algorithm, virtually the basis for all policy gradient methods. I've only ever seen it
quoted in forms equivalent to advantage * gradient of log(p) where p is the
probability of the chosen action. Correct, but also opposite to helpful if you are
trying to understand what is going on. Think of it as multiplying two gradients,
where one is a gradient of cross-entropy between the current policy and
whatever happened w.r.t policy parameters, and the second is the gradient of the
reward function w.r.t whatever happened (as a distribution). Everyone uses it in
the simpli�ed case where "whatever happened" is a degenerate distribution, i.e. a
one-hot vector, sampled from the current policy.

6. Fun fact: it is possible to estimate gradients by a single sample of the function
value. If x is sampled from a distribution with mean x0, then (with appropriate
choice of variance etc.) (x - x0) * f(x) is an estimator of the derivative of f at x0. It
is still an estimator if you only sample once, though if the value of f(x0) is far
from zero, it is a very noisy estimator. Normalization and other tricks help by
making such estimators have nice properties (low variance/noise) but they don't
change the fundamental fact that they are still valid gradient estimators, no
mater what constant you add or subtract.

7. Knowing about 6, the difference between the concepts of "reward" and "gradient"
disappears. You can imagine that any reward function is an estimator of a
gradient of some further, unknown function that you want to optimize.
Alternatively, each gradient can be regarded as an array of multipliers or
"element-wise rewards" such that the current "reward" can be obtained by
multiplying them element vise by the output vector and summing.
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